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Abstract

We consider a vertical oligopoly market in which (i) two firms have their products tested

publicly before launch, and (ii) a minimum quality standard (MQS) is imposed. Firms choose

the accuracy of their product tests, balancing two competing incentives: hiding information

makes it easier to pass the MQS, while revealing information softens price competition through

differentiation. In the unique symmetric equilibrium, each firm chooses a test that fully reveals

high qualities and pools middle qualities around the MQS. For the regulator, the MQS reduces

efficiency through reduced trade, though overall consumer surplus is increased due to intensi-

fied price competition.
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1 Introduction

In many markets consumers have little information about the quality of a new product before

or sometimes even after it is launched. To resolve the lemons problem and facilitate trade firms

usually engage in various marketing strategies to disclose their quality information to the market.

In the recent decades, the increasing availability of credible testing experts (e.g., IncoTest), third-

party product reviewers (e.g., Consumer Reports) and widely adopted online reviews (e.g., Amazon

reviews, consumerreview.com) enables the firms to disclose quality information in a public and

credible, yet flexible way.

This paper studies the effect of competition and policy intervention on firms’ choices of disclosure

strategies in vertical oligopoly markets. In our framework, two competing firms can each choose

to have a new product tested publicly before launch. We model the test as a publicly observable

information structure that maps the quality of a product to a signal, or a score, without imposing

additional restriction on it. Such a flexibility assumption and that the firms have full control

over their own test can be rationalized by choosing from different third party tests available in

the market with different coarseness and toughness, or even conducting their own pre-registered

laboratory experiments. After the test results are publicized, the firms launch their products and

are involved in a pricing game constrained by a minimum quality standard (MQS), in that a firm

can obtain the licence to operate in the market and launch the product only if the score exceeds

the MQS. When one or both firms pass the test and become available in the market, a unit mass of

consumers with heterogeneous tastes for qualities decide whether and which product to purchase.

We find that in the unique symmetric equilibrium both firms adopt a simple monotone parti-

tional strategy: the qualities within a neighborhood of the minimum standard are pooled, while

all other qualities are perfectly revealed.1 In other words, each firm chooses a test that conceal

information when the realized quality is close to the MQS, so that the market participants cannot

distinguish between two different qualities within this region. In particular, if the MQS is suffi-

ciently low, all qualities at the bottom are pooled so that both firms always pass the test and the

induced market structure is always duopoly. As the standard increases, one or both firms exit in

1The form of information revelation at the lower end is not unique. This is because a firm is excluded whenever
the score falls strictly below the MQS, and thus the disclosure strategy in low states does not affect the market
outcome. The symmetric equilibrium is essentially unique up to this payoff-irrelevant multiplicity.
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case of a failure to meet the standard after the test. When the standard is sufficiently high, each

firm pools all high states such that it either launches the product with a score right at the standard,

or exits the market.

The equilibrium structure reflects two countervailing economic forces. Without an MQS, both

firms have incentive to increase test precision since more information leads to higher level of per-

ceived quality differentiation, and, hence, it mitigates price competition. With an MQS, however,

a firm is excluded and earns nothing whenever the score is below the standard, but earns strictly

positive profit if it passes (either as a monopolist or as a low-quality firm in the duopoly). The dis-

creteness in profit creates a potential gain from local concealment: the firm can increase the chance

of passing by pooling some low quality states, in which it would have failed under full information,

with higher states.

We further investigate the welfare implication of the MQS policy. It is intuitive that imposing

a non-trivial MQS hurts both firms, since it intensifies the price competition through partial con-

cealment and sometimes induces exclusion from the market. In fact it is also socially inefficient if a

regulator/planner assigns equal Pareto weights to consumer surplus and producer surplus, because

the prices are pure transfers and do not affect the social welfare. In this case the only goal of the

planner is the matching efficiency, that is, consumers who are more (less) sensitive to quality pur-

chase from the firm with higher (lower) quality. Without an MQS the firms reveal full information

in equilibrium and the planner can achieve the upper bound of social efficiency through a sorting

pricing equilibrium. When the planner cares enough about consumer surplus, the impact of compe-

tition intensification becomes a major concern. If the MQS is sufficiently close to the lower bound

of the quality, the regulator wants to increase it in order to generate more equilibrium pooling and,

therefore, more competition. But if the MQS becomes too high then the possibility of a monopoly

or of market shut-down becomes significant. Thus, the optimal MQS is interior.

Our results shed light on why firms might sometimes practice cutoff disclosure strategies in which

only high qualities are fully revealed, even when testing is costless and the information strategy is

not restricted to “all or nothing” as in disclosure games. We also highlight the interaction between

a minimum quality standard and the firms’ marketing strategy. Introducing a minimum standard

could be socially beneficial even without considering its effect on firms’ investment in quality. On the

technical side, by modelling the marketing strategy as a choice of information structures, we bridge
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the recent development in information design with the classical topic of quality disclosure in the

IO literature. In particular, we are among the first studies (see also Boleslavsky et al., 2019; Yang,

2020) that consider competitive persuasion with post-persuasion market interactions. In a model

with independent and continuous state space, we demonstrate the construction of a competitive

persuasion equilibrium within the class of games with piece-wise linear (ex post) payoffs.

Section 2 discusses how our analysis relates and contributes to the existing literature. Section

3 outlines the model setup. Section 4 provides the main result on the market equilibrium. Section

5 presents results on welfare effects of the policy intervention. Section 6 discusses and concludes.

All proofs for secondary results can be found in the appendix.

2 Related Literature

This paper is related to several strands of literature. First, it contributes to the literature on

disclosure games in oligopoly markets. Board (2009) investigates competitive quality disclosure in

an uncovered vertical duopoly with heterogeneous consumers. Levin et al. (2009), on the other

hand, consider quality disclosure with both horizontal and vertical differentiation, but in absence

of consumer heterogeneity. Our model, like Board (2009), is based on the vertical differentiation

models developed by Gabszewicz and Thisse (1979) and Shaked and Sutton (1982). In contrast, we

focus on the case of covered market and consider an alternative communicating channel, Bayesian

persuasion, motivated by the extensive use of public tests or certifications in the market.

Canidio and Gall (2019) considers a model with covered market similar to ours. In their model

each firm can generate a public signal correlated to its quality at a fixed cost before pricing. Their

information structure departs from the paradigm of voluntary disclosure, but is still exogenously

fixed, whereas in our model information structures are completely endogenous. In addition, we

assume costless public tests, while the firms face a policy constraint, the minimum quality standard.

This paper belongs to a growing literature on Bayesian persuasion and information design (Ka-

menica and Gentzkow, 2011; Gentzkow and Kamenica, 2016a; Kolotilin et al., 2017; Au and Kawai,

2019,0; Koessler et al., 2018; Garcia, 2018; Dworczak and Martini, 2019; Arieli et al., 2019; Kleiner

et al., 2020) and their applications in market environments (Gill and Sgroi, 2012; Roesler and
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Szentes, 2017; Boleslavsky et al., 2017; Armstrong and Zhou, 2019; DeMarzo et al., 2019; Za-

pechelnyuk, 2020). In particular we build a model of competitive persuasion with independent and

continuous state space, which is followed by a subsequent pricing game. A closely related paper

is Boleslavsky et al. (2019), which studies a similar model but in an horizontal oligopoly in which

consumers face uncertainty in independent match values rather than common product qualities.

Moreover, the pricing and information strategies are chosen simultaneously in their model while

we consider price competition after the revelation of public signals.2 In a companion paper (Yang,

2020) we study the same baseline model of vertical differentiation, but focus on an uncovered mar-

ket without policy interventions. We show that the demand effect becomes a main concern in the

uncovered case, which is absent in the current paper.

Finally, the role of minimum quality standards in vertically differentiated markets is considered

in a small but long-standing literature (Leland, 1979; Ronnen, 1991; Crampes and Hollander, 1995;

Lutz et al., 2000; Buehler and Schuett, 2014). A common insight due to Gabszewicz and Thisse

(1979) and Shaked and Sutton (1982) is that firms can relax price competition by enlarging prod-

uct differentiation. Thus, adopting an MQS can be socially beneficial because it limits the range

of quality differentiation and facilitates higher quality provision.3 For instance, Ronnen (1991)

demonstrates these effects of MQS in a model with fixed quality investments. Crampes and Hol-

lander (1995) address the same question when quality-provision costs are variable and sufficiently

convex. In contrast our paper focuses on the interaction between the MQS and the firms’ disclosure

strategy, while taking the true quality distributions and realizations as exogenous.

3 Model

Two firms launch new products aimed at a unit mass of risk neutral consumers. The consumers are

heterogeneous in their sensitivity to quality, represented by θ. We assume θ is uniformly distributed

with support [θ, θ̄]. Each consumer has unit demand and receive utility qiθ − pi when purchasing

the product i with qi at price pi, and zero otherwise.

2The sequential structure is more plausible and interesting in the stylized vertical oligopoly model. If instead the
firms choose prices before the signals are realized, the symmetric equilibrium has to feature zero prices for both firms
that resembles the classical Bertrand equilibrium.

3A binding MQS forces the low quality firm to increase its quality, which in turn drives the high quality firm to
increase quality due to the strategic complementarity between quality choices of different firms.
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Firm i ∈ {1, 2} produces a new product with quality qi ∈ [q, q̄] at zero marginal cost. The

qualities are independently distributed with identical cumulative distribution function F that is

uniform. F is common knowledge, while neither the firms nor the consumers know the realization

of (qi, qj) a priori.

There are three stages. Before releasing, each firm subjects its product to a pre-launch public

test. A test (Si, τi) is represented by an information structure that consists of a signal (score) space

S and a mapping τi : qi 7→ ∆(si) from the quality to a distribution of scores. After the a score

si is generated, the society forms a posterior belief µsi about qi using Bayes rule. Without loss of

generality we assume the score takes a literal meaning, such that si = Eµsi (qi).
4 We assume no

particular structure of the test and each firm can design its own testing strategy in a flexible way.

Both the tests {(Si, τi)}i=1,2 and the realized scores {si}i=1,2 are publicly observable.

After the test stage, the firms launch their goods facing an exogenously imposed minimum

quality standard (MQS) s0. Firm i can launch its good only if si ≥ s0. If neither firms are

qualified, the game ends. If exactly one firm is qualified, it operates as a monopolist. If both firms

are qualified, the game proceeds to the price competition stage in which two firms simultaneously

set prices pi and pj . In the last stage, the consumers make purchase decisions based on the price(s)

and test results.

In this paper we focus on the covered but non-preempted market in the duopoly case, that is,

all consumers purchase and both firms face non-zero demand.5 Thus we impose the following two

assumptions:

Assumption 1 (Covered market).
q̄ − q
q
≤ 3θ

θ̄ − 2θ
.

Assumption 2 (Sufficient taste heterogeneity). θ̄ ≥ 2θ.

These two assumptions are in line with those made in Tirole (1988). Assumption 1 ensures that

for any realized scores (even in the most extremely differentiated case) all consumers buy one of the

4This is without loss of generality because the consumers only care about the expected quality given a certain
signal, that is, the posterior mean. Thus, we can combine any two signals that induce the same posterior mean (not
necessarily the same posterior) and relabel the signal as si = Eµsi (qi).

5In the companion paper Yang (2020) we investigate the competitive test design when the duopoly market is
not covered. For instance, the duopoly market is never covered when θ = 0 since the consumer with type θ does
not purchase any product unless the price is 0. In this case the market coverage is endogenously determined by the
perceived qualities and, hence, the information strategy, resulting an additional demand effect of quality disclosure.
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two brands. Assumption 2 says that the consumer taste for quality is sufficiently heterogeneous. It

guarantees that in equilibrium the low score firm also serves a positive fraction of the market. The

role of these two assumptions becomes clear once we derive the pricing equilibrium.

The solution concept in this paper is strong Perfect Bayesian Equilibrium. A strategy profile

(τ∗i , p
∗
i (s))i=1,2 constitutes an sPBE if 1) (p∗1(s), p∗2(s)) forms a pricing equilibrium given any pair

of realized s = (s1, s2), 2) τ∗i is firm i’s optimal information strategy given τ−i = τ∗−i and (p1, p2) =

(p∗1, p
∗
2) for any sub-game following realization (s1, s2), and 3) the public posterior belief following

any s is derived through Bayes rule whenever possible. We focus on the symmetric equilibrium.

4 Main Results

4.1 Pricing equilibrium

We first examine the pricing equilibrium for a fixed pair of realized scores (s1, s2). If only one firm

passes the test and remains in the market, the consumers purchase if and only if E(qθ − p|s) ≥ 0.

The linear structure reduces the condition to sθ − p ≥ 0. The monopolist faces demand Dm =

Pr(θ ≥ p
s ) = 1

θ̄−θ (θ̄ − p
s ). The monopoly price is given by the first order condition:

pm =
θ̄

2
s.

Thus the monopoly profit is πm(s) = pmDm(pm) =
θ̄2

4(θ̄ − θ)
s.

The duopoly case follows the textbook treatment in Tirole (1988). We label the two firms h and

l according to the score ranking. Given revealed scores (sh, sl) and prices (ph, pl) the consumers

sort into two subsets [θ,X] and [X, θ̄] such that high type consumers (θ > X) purchase from the

high score firm, low type consumers (θ < X) purchase from the low score firm, and the threshold

type (θ = X) is indifferent:

shX − ph = slX − pl ⇒ X =
ph − pl
sh − sl

.

The firms face demand Dh = 1
θ̄−θ (θ̄ −X) and Dl = 1

θ̄−θ (X − θ). The pricing equilibrium is easily
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solved through first order conditions:

pdh =
(2θ̄ − θ)

3
(sh − sl), pdl =

(θ̄ − 2θ)

3
(sh − sl).

Accordingly, the equilibrium cutoff is Xd =
θ̄+θ

3 and the equilibrium profits are given by

πdh(sh, sl) =
(2θ̄ − θ)2

9(θ̄ − θ)
(sh − sl), πdl (sh, sl) =

(θ̄ − 2θ)2

9(θ̄ − θ)
(sh − sl).

Note that in the covered market case the equilibrium segmentation determined by X does not

depend on the perceived qualities (s1, s2). The demand for each firm depends only on the ordinal

ranking of qualities, so both the equilibrium prices and the equilibrium profits are linear functions

of the perceived quality differentiation (sh − sl).6 When (sh − sl) increases, the firms are more

differentiated and hence less competitive, leading to higher prices and profits for both firms. This

fact is convenient since it implies that the information strategies in the first stage only affect the

identity of high and low firms and their equilibrium prices, but not demand.

4.2 Information equilibrium

Note the consumers’ choices depend only on the conditional expected qualities given (s1, s2) (hence

the scores themselves) but not on any other distributional properties of the induced posterior

beliefs. In consequence, the firms’ profits also depend only on the posterior means. Following the

literature on Bayesian persuasion and information design (e.g., Gentzkow and Kamenica, 2016b;

Kolotilin, 2018), each firm’s choice (Si, τi) is equivalent to the choice of a distribution Gi(si) over

the posterior means si subject to the constraint that Gi is a mean-preserving contraction of F ,7

denoted as Gi ∈ MPC(F ).

max
Gi∈MPC(F )

∫ q̄

q

∫ q̄

q

πi(si, s−i)dG−i(s−i)dGi(si)

6This is because the best responses of both h and l firms are proportional to (sh − sl). See Canidio and Gall
(2019) for a detailed discussion of the (price) best responses under general distributional assumptions.

7Equivalently, F is a mean-preserving spread of Gi, defined as follows:
∫ t
0 Fi(x)dx ≥

∫ t
0 Gi(x)dx for any t ∈ [0, 1]

and
∫ 1
0 Fi(x)dx =

∫ 1
0 Gi(x)dx.
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where the ex post profit is given by

πi(si, s−i) = 1{si≥s0>s−i}π
m(si) + 1{s−i>si≥s0}π

d
l (si, s−i) + 1{si≥si≥s0}π

d
h(si, s−i).

Each firm plays one of four possible roles depending on (s1, s2): 1) the excluded firm when

si < s0, 2) the monopoly firm when s−i < s0 ≤ si, 3) the low quality firm in the duopoly when

s0 ≤ si ≤ s−i, and 4) the high quality firm in the duopoly when s0 ≤ s−i ≤ si. Note in the

knife-edge case between case 3) and 4) the firms are facing the extreme Bertrand competition and

equilibrium prices are driven to zero. Firm i chooses Gi to determine the distribution G = G1×G2

over (s1, s2) and maximize its expected profit EG(πi(s1, s2)) given the choice of the opponent firm.

Figure 1 demonstrates the shape of πi(si, s−i) as a function of si for a fixed s−i. Depending on

whether firm −i passes the test, firm i’s ex post profit follows one of the two piece-wise linear

structures.

s1

π1(s1, s2)

q q̄s0

fail pass

s2
s1

π1(s1, s2)

q q̄s0

fail pass

Figure 1: Ex post profit of firm 1 given s2 (a) s2 ≥ s0 (b) s2 < s0

We show that in equilibrium both firms follow an information strategy in the form of monotone

partitions specified in the definition below.
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Definition 1. An information strategy is within the class of Gδ if there exists a δ such that

Gδ(s) =



F (s) if s ≤ s0 − δ

F (s0 − δ) if s0 − δ < s < s0

F (s0 + δ) if s0 ≤ s < s0 + δ

F (s) if s ≥ s0 + δ

in which either [q, s0 − δ) or (s0 + δ, q̄] or neither is empty.

Theorem 1. For any s0 ∈ [q, q̄] there exists a symmetric information equilibrium (G∗1, G
∗
2) such

that G∗1 = G∗2 = Gδ
∗

in which δ∗ ∈ (0,min{s0 − q, q̄ − s0}] is uniquely determined. In particular,

there exists a unique pair of (sl0, s
u
0 ) such that sl0 <

q̄ + q

2
< su0 and

• δ∗ = s0 − q when s0 ≤ sl0,

• δ∗ < min{s0 − q, q̄ − s0} when sl0 < s0 ≤ su0 ,

• δ∗ = q̄ − s0 when s0 > su0 .

Moreover this equilibrium is unique up to a payoff-irrelevant change in Gδ
∗

on [q, s0 − δ∗].

Remark. In fact any G such that G|[q,s0−δ∗] ∈ MPC(F |[q,s0−δ∗]) and G|[s0−δ∗,q̄] = Gδ
∗ |[s0−δ∗,q̄]

can arise in equilibrium. This is because each firm earns 0 in the interval [q, s0−δ∗] and any change

in the disclosure rule in this region does not affect Πi for either i.

Corollary 1. The following strategies and beliefs constitute a symmetric sPBE: the equilibrium

test structure is such that Si = [q, q̄] and

τ(qi) =

s0 if s0 − δ ≤ s ≤ s0 + δ

qi otherwise

,

the pricing equilibrium is as specified in section 3.1, and the public posterior belief is consistent with

Bayes rule on the equilibrium path (when si ∈ [q, s0 − δ∗] ∪ {s0} ∪ [s0 + δ∗, q̄]) and passive off the

equilibrium path, that is, µsi is a Dirac distribution at q for all si ∈ (s0 − δ∗, s0) ∪ (s0, s0 + δ∗).
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Corollary 2. When there is no binding MQS, s0 = q, the unique sPBE features 1) full information

in the first stage (so no off-equilibrium-path beliefs), and 2) pricing equilibrium as described in

section 4.1.

Theorem 1 provides an equilibrium characterization in terms of the distribution of scores G.

Corollary 1 describes a test structure that implements the equilibrium Gδ
∗
. The equilibrium test

design has a monotone-partition structure and reduces to full revelation when the MQS does not

exist (corollary 2). The intuition follows the literature on vertical oligopolies since Gabszewicz and

Thisse (1979) and Shaked and Sutton (1982). The firms always benefit from less competition by

enlarging the quality differentiation. In the current environment of exogenous quality but endoge-

nous information, the firms can only choose a distribution over the possible scores subject to a

mean-preserving contraction condition. Fix any strategy by the opponent −i, full information is a

best response of firm i when there is no MQS because revelation gives the highest possible level of

expected differentiation. Thus the unique information equilibrium features full revelation and it is

in fact a dominant strategy equilibrium.

When there is a non-trivial MQS, a new trade-off is introduced. On one hand, the firms still

have the incentive to soften competition through enlarging differentiation in the duopoly case. On

the other hand, each firm has an incentive to increase the probability of meeting the MQS. This is

because the firm is excluded from the market and gets 0 profit following a failure (si < s0), while

meeting the MQS, even at the minimum level si = s0, leads to a strictly positive profit. Such a

profit discontinuity at s0 creates an incentive for local concealment.

4.3 Proof sketch of Theorem 1

This subsection presents the proof sketch for our main theorem (all detailed proofs can be found in

the appendix).

Throughout we make use of two results in the recent literature on linear persuasion problems

by Dworczak and Martini (2019), Arieli et al. (2019) and Kleiner et al. (2020). These two results

provide solutions to the single-sender problems and lay the foundation for our best response analysis.
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Consider a linear persuasion problem (F, π) with prior F and payoff function π:

max
G∈MPC(F )

∫
π(x)dG(x).

We summarize the optimal solutions in the following lemmas.

Lemma 2. (Dworczak and Martini, 2019) If there exists a cdf G and a convex function φ : [0, 1]→

R, such that

(1) φ(x) ≥ π(x) ∀ x ∈ [0, 1],

(2) supp(G) ⊆ {x ∈ [0, 1] : π(x) = φ(x)},

(3)
∫ 1

0
φ(x)dG(x) =

∫ 1

0
φ(x)dF (x), and

(4) G is a mean-preserving contraction of G.

Then G is a solution to the optimal information design problem.

Definition 2 (Bi-pooling policy). A distribution G ∈ MPC(F ) is a bi-pooling distribution w.r.t. F

if there exists a collection of pairwise disjoint intervals {(ai, bi)}i such that

1. For each i, G((ai, bi)) = F ((ai, bi)) and |supp[G|(ai,bi)]| ≤ 2.

2. For all x /∈ ∪i(ai, bi), G(x) = F (x).

Lemma 3. (Arieli et al., 2019; Kleiner et al., 2020) Every persuasion problem (F, π) has an optimal

bi-pooling policy.

Lemma 2 provides a tractable graphic method to verify the optimality of a given information

strategy G. Lemma 3 characterizes the set of extreme points in the linear persuasion problems. We

first check the best response conditions (lemma 4) and verify the proposed equilibrium characteri-

zation (lemma 5). The existence directly follows the construction.

Lemma 4 (best response). Assume firm 2 follows the proposed strategy with arbitrary δ ≤ min{q̄−

s0, s0 − q}, there exists a δ′ such that it’s a best response for firm 1 to choose G1 = Gδ
′
.

Lemma 5 (fixed point). For any s0 there exists a unique δ∗ such that the proposed strategy profile

(Gδ
∗
, Gδ

∗
) constitutes a symmetric equilibrium. In particular, there exists a unique sl0 ∈ (q,

q+q̄

2 )

and a unique su0 ∈ (
q+q̄

2 , q̄), such that the equilibrium features
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1. δ∗ = s0 − q when s0 ≤ sl0,

2. δ∗ ∈
(
0,max{s0 − q, q̄ − s0}

)
when sl0 < s0 < su0 , and

3. δ∗ = q̄ − s0 when s0 ≥ su0 .

To demonstrate the structure of the best responses, we first characterize firm 1’s interim payoff

function Π1(s1) =
∫
π1dG2 when firm 2 follows the proposed strategy G2 = Gδ. Figure 2 illustrates

the shape of Π1: it is 0 when s1 < s0, linear and increasing when s1 ∈ [s0, s0 + δ), and convex and

increasing when s1 ∈ [s0 + δ, q̄]. To verify firm 1’s best response, we simply apply lemma 2 and let

φ be the maximum of Π1 and the dashed blue curve. For instance, in the left panel firm 1’s best

response is G1 = Gδ
′

with δ′ = s0 − s′:

• φ is convex and φ ≥ Π1,

• suppG1 = [q, s′] ∪ {s0} ∪ [2s0 − s′, q̄] ⊂ {s1 : φ(s1) = Π1(s1)},

• EF (φ(s1)) = EGδ′ (φ(s1)) because Gδ
′

= F for all s1 /∈ (s0 − δ′, s0 + δ′) and

EF (φ(s1))|(s0−δ′,s0+δ′) = F ((s0 − δ′, s0 + δ′))φ(s0) = EG(φ(s1))|(s0−δ′,s0+δ′).

s1

Π1(s1)

q q̄s0
s0 + δs0 − δ

revealing pooling revealing

s′

s1

Π1(s1)

q q̄s0
s0 + δs0 − δ

s′

revealing pooling revealing

s1

Π1(s1)

q q̄s0
s0 + δs0 − δ

revealing pooling revealing

s′

Figure 2: Interim profit of firm 1 with (a) s′ > s0 − δ, (b) s′ = s0 − δ and (c) s′ < s0 − δ

We can verify in a similar way that δ′ = s0−s′ = δ in the central panel and δ′ ∈ (0, s0−s′) in the

right panel. Observe that when δ is large (small), firm 1 response by a smaller (larger) δ′, implying

that the best response correspondence is a contraction mapping. Thus there exists a unique δ (the

central panel) that constitutes the symmetric equilibrium.
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The arguments above cover the cases when s0 is at an intermediate level. When s0 is close to

q or q̄, the choice of fixed point δ is capped by s0 − q or q̄ − s0. In those cases we can simply set

δ∗ to equal the bounds and rebuild the equilibrium. The structure is the same as the intermediate

s0 case except that either [q, s0 − δ] or [s0 + δ, q̄] is empty. Figure 3 demonstrates these two corner

equilibria.

s1

Π1(s1)

q q̄s0 s0 + δ

pooling revealing

s′

s1

Π1(s1)

q q̄s0s0 − δ

revealing pooling

s′

Figure 3: Interim profit of firm 1 in corner equilibrium (a) low s0, (b) high s0

Combining lemma 4 and lemma 5 we can prove the equilibrium characterization in Theorem

1. The uniqueness is established step by step as follows. According to lemma 3, the best response

of firm 1 to any information strategy G2 takes the bi-pooling structure unless Π1 is locally linear,

wherein firm 1 is indifferent among any G ∈ MPC(F ) and the best response can be arbitrary. We

rule out all other possibilities in lemma 6, 7 and 8.

First of all, we show that full information does not constitute an equilibrium (lemma 6). The

proof is straightforward: when firm 2 is fully revealing, firm 1 faces an interim expected profit

function that is 0 when s1 < s0 and strictly positive when s1 = s0. Hence, full information is

not a best response. Firm 1 has an incentive to deviate to a strategy that involves at least partial

concealment in the neighborhood of s0.

Lemma 6 (no full revelation equilibrium). Gi = Gj = F is not an equilibrium for any s0 > q.

Next we show that there exists no symmetric equilibrium such that G features an atom above

s0. That is, local pooling arise only at s0 in a symmetric equilibrium. To prove this result, let

firm 2 pool a neighborhood of an arbitrary state s > s0. We can show that firm 1’s interim profit
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Π1(s1) within this neighborhood (s− ε, s+ ε) is convex, so according to lemma 2 the best response

cannot involve local pooling around s. This rules out all symmetric equilibria in local uni-pooling

or bi-pooling strategies other than Gδ. Following the same logic, we can rule out any G with a

mass point at any s′ > s0 (corollary 3).

Lemma 7 (no pooling besides s0). For any candidate symmetric equilibrium, G does not involve

local uni-pooling at any s′ > s0 or any bi-pooling sub-intervals.

Corollary 3 (no mass point besides s0). For any candidate symmetric equilibrium, G does not

involve a mass point at any s′ > s0.

Lemma 6 and 7 shows that within the class of bi-pooling strategies, the only possible symmetric

equilibrium is Gδ
∗

proposed in Theorem 1. There is one more case to rule out, which we refer

to as the “matching-pennies” type equilibrium. Note that it is without loss to restrict attention

to bi-pooling policies when we consider a single-sender problem, because bi-pooling policies cover

all extreme points of linear persuasion problems. This is not without loss when we consider the

equilibrium in a game. As demonstrated by Boleslavsky et al. (2019) and Yang (2020), a strategy

G ∈ MPC(F ) constitutes a symmetric equilibrium when it can make Π1(s1) =
∫
π1(s1, s2)dG(s2)

linear over a subset of (q, q̄) even if it is not a bi-pooling strategy. This is because when Πi is

linear firm i is indifferent among various information strategies, which justifies the optimality of

the strategy G−i = G that leads Πi to be linear. Such an equilibrium resembles the intuition of the

mixed strategy equilibrium in matching-pennies games.

The next lemma rules out such “mixed” strategy equilibria.8 The proof idea follows the previous

lemmas. Consider any strategy G2 that is continuous but different from F on a sub-interval of [s0, q̄].

Firm 1 best responds by choosing the same distribution only if Π1(s1) is linear in s1 in the same

sub-interval. Such a possibility is falsified by the piece-wise linearity of π1.

Lemma 8 (no “matching-pennies” equilibrium). For any candidate symmetric equilibrium and any

interval [sl, su], there exists a finite partition of this interval such that either G = F or G takes a

constant value. No other strategies can be supported in any symmetric equilibrium.

8It is technically different from the mixed strategy equilibrium defined in a finite game since the strategy space
is a subset of all possible distributions MPC(F ). The underlying idea that each player chooses her strategy to make
the opponent indifferent, however, is the same.
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5 Welfare analysis

Given the equilibrium characterization we can consider the welfare impact of the minimum quality

standard s0. Assume the regulator chooses an MQS to maximize a weighted sum of the producer

surplus (PS) and the consumer surplus (CS):

max
s0

αEG∗ [CS(sh, sl)] + (1− α)EG∗ [πh(sh, sl) + πl(sh, sl)] .

where CS(sh, sl) = 1{sl<s0≤sh}CS
m(sh)+1{s0≤sl≤sh}CS

d(sh, sl), πh(sh, sl) and πl(sh, sl) are given

in section 4.1, and CSm and CSd are computed as follows:

CSm(s) =

∫ θ̄

θ̄/2

[θs− pm(s)] dH(θ),

CSd(sh, sl) =

∫ X

θ

[
θsl − pd(sh, sl)

]
dH(θ) +

∫ θ̄

X

[
θsh − pd(sh, sl)

]
dH(θ).

Note that we can directly write the surplus terms as functions of (s1, s2) since the ex post profits

are already shown to be independent of true qualities and the ex post consumer surplus CS(q1, q2)

is linear in the true qualities.9 Figure 4 illustrates the score distribution and the associated market

structure when δ∗ is interior.10 For instance all realizations in (s0 − δ∗, s0 + δ∗)2 are pooled at

(s0, s0), resulting in a duopoly market with extreme Bertrand competition. The ex ante surplus

terms can be computed according to this distribution.

We consider two special cases: a social-welfare-maximizing regulator with equal Pareto weights

α = 1
2 and a consumer-surplus-maximizing regulator with α = 1. Proposition 1 shows that in the

first case any non-trivial MQS must be socially inefficient.

Proposition 1. When α = 1
2 , the regulator optimally chooses s0 = q.

The underlying intuition is straightforward. When α = 1
2 , the prices are just transfers within the

society and have no impact on the social welfare, regardless of the market structure. The regulator

9For instance, in a monopoly market with true quality q and score s we have CSm(q, s) =
∫ θ̄
θ̄/2 [θq − pm(s)] dH(θ).

Following any score realization that leads to such a monopoly market, the consumer surplus CSm(s) =

E [CSm(q, s)| s] =
∫ θ̄
θ̄/2 [θs− pm(s)] dH(θ). The same logic holds in the duopoly case.

10Here we assume the firms are pooling instead of revealing all states below s0 − δ∗, but as discussed in section
4.2 this is payoff irrelevant.
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Figure 4: Equilibrium score distribution and market structure with interior δ∗.

only cares about value θq generated from the trade. Since the quality and the consumer type present

complementarity, the regulator prefers sorting outcomes, that is, high (low) type consumers buy

high (low) quality products, to randomizing for fixed market shares.11 When s0 ≤ sl0, the market is

always duopoly. Any s0 > q leads to pooling in the region (s0 − δ∗, s0 + δ∗)2. In this situation the

two products have the same perceived quality and all consumers randomize over two firms, leading

to both mismatch (high type consumers might end up with a low quality product and vice versa)

and smaller market share for the high quality product (in full information equilibrium the high

quality firm serves more than one half of the consumers since X =
θ̄+θ

3 <
θ̄+θ

2 ). When s0 is even

larger so that the information equilibrium becomes interior, the mismatch effect grows and there

is an additional source of inefficiency, possibility of no trade, either when both firms fail the test

or only one monopolist serves the market. Given these concerns the welfare maximizing regulator

prefers no MQS so that full information equilibrium results.

Proposition 2. When α = 1, the regulator optimally chooses a non-trivial MQS s0 ≥ sl0.

To understand the intuition, note that the consumers enjoy the gain from trade and incurs the

loss from payments. On the one hand, a non-trivial s0 reduces consumer surplus in the same way

as it reduces social welfare. On the other hand, it leads to partial concealment and restricts the

11Of course the First Best is that all consumers purchase from the high quality firm. However this is not feasible
since the regulator has no control over the trading process.
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scope of differentiation. When both firms are pooled at s0, the consumers pay zero due to the

extreme Bertrand competition. Proposition 2 shows that when no exclusion is involved (the market

structure is always duopoly), the gain from intensified price competition always dominates the loss

from inefficient matching, so the consumer surplus increases with the MQS. When s0 exceeds sl0,

possibility of market shut-down or monopoly leads to higher allocation inefficiency and, hence,

might harm the consumers in net.

The two propositions directly imply that the regulator introduces a non-trivial MQS only if she

weighs consumer surplus sufficiently high.

Corollary 4. The regulator optimally chooses a non-trivial minimum quality standard s0 > q only

if α is sufficiently close to 1.

6 Discussion

General distributional assumption. Although we assume that both the quality distribution

F and the consumer taste distribution H are uniform, the main result directly carries over if we

consider general distributions. This is because the qualitative results depend crucially on the piece-

wise linearity of the ex post equilibrium profits, which relies on neither F nor H being uniform.

In particular, relaxing H results in no closed form of the cutoff consumer type X. However,

as long as the density h is log-concave and satisfies the generalized covered duopoly market as-

sumptions, equilibrium X can be uniquely characterized and more importantly, it only depends on

H.12 As a result, equilibrium prices are still linear in the perceived differentiation, leading to no

qualitative change in the basic structure of the information game. As for the distribution of quality

F , note that no proof of the main theorem relies on the uniform distribution assumption of F . We

assume F to be uniform only for expositional simplicity, especially in the welfare analysis.

Uncovered market. The covered market assumption is crucial since it results in the constant

market share property and hence the linearity of ex post equilibrium profits. Extension to uncovered

market brings new trade-offs as well as technical challenges. In a companion paper (Yang, 2020) we

study the uncovered case without policy interventions. We find that full revelation is no longer a

12See Canidio and Gall (2019) for a complete characterization.
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dominant strategy even without a minimum quality standard. For example a firm would optimally

choose a pass or fail strategy if the opponent fully conceals the quality. This is because the market

shares are no longer fixed in the uncovered market and the equilibrium payoff becomes piece-wise

concave instead of piece-wise linear. The competition, however, drives both firms to disclose more

and full revelation arise in equilibrium in some but not all circumstances.

Who controls the information? Our model assumes that the firms have full control over and no

cost in their own information structure. The regulator plays a relatively passive role, in the sense

that she can only affect the market through the choice of the minimum quality standard.

Alternatively, firms might face mandatory disclosure policies that are directly regulated in some

markets. For instance, food manufacturers must conform to FDA requirements regarding nutritional

information disclosure. In such a situation we can consider a regulator directly designs a public test

structure that is by nature two-dimensional. In our model setup, the resulting optimal information

structure is simple:

Proposition 3 (Regulator-optimal test). If the regulator has full control over the test structure,

1. full revelation is optimal if the regulator is welfare maximizing with equal weights, and

2. full concealment is optimal if the regulator only cares about consumer surplus.

Moreover, no MQS is beneficial when the regulator can control the information structure.

Note that the optimal information structure is not unique in either case. The intuition is sim-

ple. Essentially the welfare maximizing regulator only cares about revealing ranking information

to maximize matching efficiency, while the consumer-surplus-maximizing regulator prefers any in-

formation structures that reveal no information about ranking (so that the firms compete in an

extreme Bertrand manner). The full revelation and full concealment tests are two benchmarks

with the most straightforward disclosing rule and are invariant whether the test is restricted to

be firm-independent or allowed to be correlated.13 Since the only reason for imposing MQS in the

13Yang (2020) studies the consumer- and social-optimal information structures in the uncovered market model.
Full concealment is still consumer-optimal among all information structures that reveals no ranking information.
Full revelation, however, is no longer socially optimal. In fact the ranking-only policy is the unique socially optimal
information structure due to the existence of demand effects.
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main context is intensifying price competition through partial information, it does not bring further

benefit if the test itself is under the regulator’s control.

Endogenous quality choice. The benefits of the minimum quality standard in our model have

a limited scope due to the assumption that the true qualities (both the distributions and the

realizations) are exogenous. This simplification shuts down the channel of motivating the firms’

quality provision, which could be an important justification for the use of MQS as documented in

the existing literature. One interesting yet open question is how firms’ endogenous quality choice

interacts with a general test structure in the context of price competition, in which the information

structure could be either controlled by the firms as in our model or regulated by the government

in alternative settings.

Zapechelnyuk (2020) addresses such a question in a monopoly market, in which a regulator de-

signs a certification rule (an information structure restricted to deterministic scores) to incentivize

the firm’s investment in deterministic quality provision. Shapiro (1986) studies the value of licens-

ing/certification in a two-stage model but restricted to binary states and binary outputs. Oligopoly

settings might introduce very different trade-offs, for instance, the tension between reducing differ-

entiation and motivating investments. We leave the study of stochastic quality investment, general

information structure and oligopoly markets for future works.
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Appendix A Proofs

Proof of lemma 4. We first characterize firm 1’s interim payoff function Π1(s1) =
∫
π1dG2 when

firm 2 follows the proposed strategy G2 = Gδ. When s1 < s0, firm 1 is excluded and

∫ q̄

q

π1(s1, s2)dG2(s2) = 0

When s1 ∈ [s0, s0 + δ), firm 1 acts as the monopolist when s2 < s0 − δ, the high firm when

s0 − δ ≤ s2 < s1 and the low firm when s1 < s2, so

Π1(s1) =

∫ s0−δ

q

πm(s1)dG2(s2) +

∫ s0+δ

s0−δ
πdh(s1, s0)dG2(s2) +

∫ q̄

s0+δ

πdl (s2, s1)dG2(s2)

=F (s0 − δ)πm(s1) + [F (s0 + δ)− F (s0 − δ)]πdh(s1, s0) +

∫ q̄

s0+δ

πdl (s2, s1)dF (s2) (1)

Note that this term is linear in s1 since πm, πdh and πdl are all linear in s1. For simplicity we write

it as Π1|[s0,s0+δ)(s1) = ks1 + n.

When s1 ∈ [s0 + δ, q̄), firm 1 acts as the monopolist when s2 < s0 − δ, the high firm when

s0 − δ ≤ s2 < s1 and the low firm when s1 < s2, so

∫ q̄

q

π1(s1, s2)dG2(s2) =

∫ s0−δ

q

πm(s1)dG2(s2) +

∫ s0+δ

s0−δ
πdh(s1, s0)dG2(s2)

+

∫ s1

s0+δ

πdh(s1, s2)dG2(s2) +

∫ q̄

s1

πdl (s2, s1)dG2(s2) (2)

It’s straightforward to verify that this term is convex since the first two terms are linear in s1 and

the sum of the last two terms are quadratic in s1. We write it as Π1|[s0+δ,q̄)(s1) = as2
1 + bs1 + c.

In sum firm 1’s interim payoff is

Π1(s1) = 1{s0≤s1<s0+δ}(ks1 + n) + 1{s0+δ≤s1≤q̄}(as
2
1 + bs1 + c),

where (k, n, a, b, c) are constants determined by equation (1) and (2). We can verify that ∂
∂s1

π−(s0+

δ) = ∂
∂s1

π+(s0 + δ) and ∂
∂s1

π is strictly increasing on [s0 + δ, q̄].
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Let (s′, 0) denote the intersection point of the x−axis and the extension of Π1|[s0,s0+δ). We

consider four scenarios: (1) k > 0 and s′ > s0 − δ, (2) k > 0 and s′ = s0 − δ, (3) k > 0 and

s′ < s0 − δ, and (4) k ≤ 0 so s′ either does not exist or exceeds q̄. The shape of Π1 for the first 3

cases are illustrated figure 2.14

In the first and second case, we can verify that firm 1’s best response is G1 = Gδ
′

with δ′ = s0−s′

by invoking lemma 2. In particular, we let the support function φ(s1) be the maximum of Π1(s1)

and the extension of Π1|[s0,s0+δ). It’s straightforward to verify that

• φ is convex and φ ≥ Π1,

• suppG1 = [q, s′] ∪ {s0} ∪ [2s0 − s′, q̄] ⊂ {s1 : φ(s1) = Π1(s1)},

• EF (φ(s1)) = EGδ′ (φ(s1)) because Gδ
′

= F for all s1 /∈ (s0 − δ′, s0 + δ′) and

EF (φ(s1))|(s0−δ′,s0+δ′) = F ((s0 − δ′, s0 + δ′))φ(s0) = EG(φ(s1))|(s0−δ′,s0+δ′).

In the third case, firm 1’s best response is G1 = Gδ
′

in which δ′ is uniquely determined as below.

We can verify the optimality of Gδ
′

for each case in the same way as the first case.

1. when s0 >
1

2
(q̄ + q) and 2Π1(s0) > Π1(q̄), δ′ = q̄ − s0;

2. when s0 <
1
2 (q̄ + q) and 2Π1(s0) > Π1(2s0 − q), δ′ = s0 − q;

3. in all other cases δ < min{q̄ − s0, s0 − q} is the unique solution to

Π1(s0)

s0 − δ̃
(s1 − δ̃) = Π1(s0 + δ̃).

Finally we consider the case when k ≤ 0. This scenario occurs only when s0 is sufficiently small

and hence δ is restricted to a small range [q, s0]. Firm 1’s best response and the associated analysis

is the same as the case when s0 <
1
2 (q̄+ q) and 2Π1(s0) > Π1(2s0− q), that is, firm 1 best responds

by choosing Gδ
′

such that δ′ = s0 − q.

Proof of lemma 5. We first make the following observations:

14Although the graphs are generated from numerical settings with intermediate s0 and interior δ, the main features
of general cases are captured. Moreover, the analysis is not restricted to the numerical example in the figure.
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• Observation 1. Take the extension of the linear part Π1(s1)|[s0,s0+δ) = ks1 +n to s1 ∈ R and

denote it as Πl−ext(s1|s0, δ). We observe limδ→q Πl−ext(q|s0, δ) > 0 ∀ s0 > q. This can be

shown by substituting s1 in expression (1) with q. The only negative term is the middle term

πdh(s1 = , s0) since it is proportional to (s1− s0). When δ shrinks to 0, this term vanishes and

the whole term is positive.

• Observation 2. For any s0 > q, the slope of the linear region k is increasing continuously in δ.

Given (1), we can directly compute
∂

∂δ
k =

2Ah −Am

q̄ − q
=

9q̄2 − 16q̄q + 8q2

12(q̄ − q)2
> 0 since q̄ > 2q.

• Observation 3. For any s0 > q, Π1(s0) decreases continuously in δ:

Given (1), we can directly compute
∂

∂δ
Π1(s0) = − 1

q̄ − q
(Ams0 +Al)δ < 0.

The first observation implies that for any s0 we either have k ≤ 0 or k > 0 and s′ < q and hence

s′ < s0− δ. The second and the third observations together implies that as we increase δ from 0, k

drops. Either k is remained to be non-positive before δ reaches the bound min{s0− q, q̄− s0}, or k

becomes positive after some cutoff and s′ increase continuously with δ. Meanwhile, s0− δ decreases

continuously with δ, so as δ increases s′ and s0− δ cross at most once. Hence either one of the two

(mutually exclusive) scenarios occur:

1. Interior equilibrium: if s′ = s0− δ for some δ < min{s0− q, q̄− s0}, this delta constitutes the

symmetric equilibrium. See figure 3 panel (b) for a demonstration.

2. Corner equilibrium with s0 < sl0: if either k ≤ 0 or k > 0 but s′ < s0 − δ when δ = s0 − q <

q̄ − s0, we have a corner equilibrium such that δ′ = δ = min{s0 − q, q̄ − s0}. The cutoff sl0 is

determined by s′(s0 = sl0) = q. That this constitutes an equilibrium is established in lemma

4 and see figure 4 for a demonstration.

3. Corner equilibrium with s0 > su0 : if k ≤ 0 or k > 0 but s′ < s0−δ when δ = min{s0−q, q̄−s0},

we have a corner equilibrium such that δ′ = δ = min{s0−q, q̄−s0}. The cutoff su0 is determined

by s′(s0 = su0 ) = 2q̄ − su0 . That this constitutes an equilibrium is established in lemma 4 and

see figure 4 for a demonstration.

Finally we finish the proof by showing that sl0 and su0 are both unique. This follows directly

from the three observations below:

23



• Observation 4. When s0 = q + ε or s0q̄ − ε for ε small enough, the equilibrium is corner.

• Observation 5. When s0 <
q + q̄

2
, s′ increases in s0 if we fix δ = s0− q, since Π1(s0) decreases

continuously in s0 and k increases continuously in s0:

∂

∂s0
Π1(s0)|δ=s0−q = −

Al(q̄ − q + 4s0)

q̄ − q
< 0, and

∂

∂s0
k|δ=s0−q =

2(Ah +Al)

q̄ − q
> 0.

• Observation 6. When s0 >
q + q̄

2
, s′ decreases in s0 when we fix δ = q̄ − s0, since Π1(s0)

increases continuously in s0 and k decreases continuously in s0:

∂

∂s0
Π1(s0)|δ=q̄−s0 =

Am(4s0 − q̄ − q)
q̄ − q

> 0, and
∂

∂s0
k|δ=q̄−s0 =

2(Am −Ah)

q̄ − q
≤ 36q2

49(q̄−q)2 < 0.

Combining observation 4 and 5, there is a unique turning point from corner equilibrium s′ ≤ q

to interior equilibrium s′ > q if we increase s0 from just above q and fix δ = s0− q. Similarly, there

is a unique turning point from corner equilibrium s′ ≤ 2s0 − q̄ to interior equilibrium s′ > 2s0 − q̄

if we decrease s0 from just below q̄ and fix δ = q̄ − s0.

Proof of lemma 6. Assume firm 2 is fully revealing its quality information, that is, G2 = F , firm

1’s interim expected profit is 0 when s1 < s0 and

∫
π1(s1 = s0, s2)dF (s2) = F (s0)πm1 (s0) +

∫ q̄

s0

πl(s2, s0)dF (s2) > 0

when s1 = s0. Π1(s1) is not convex, so fully revealing quality G1 = F is not a best response.

Proof of lemma 7. We first prove that a local pooling strategy cannot arise in equilibrium.

Suppose firm 2 pools an interval (a, b) ⊂ (s0, q̄) at a+b
2 . For any state s ∈ (a, a+b

2 ), firm 1’s

interim payoff is given by

Π1(s) =

∫ s0

q

πm(s)dG(s2) +

∫ a

s0

πdh(s, s2)dG(s2) +

∫ q̄

b

πdl (s2, s)dG(s2) + πdl

(
a+ b

2
, s

)
[G(b)−G(a)] .
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For any state s ∈ (a+b
2 , b), firm 1’s interim payoff is given by

Π1(s) =

∫ s0

q

πm(s)dG(s2) +

∫ a

s0

πdh(s, s2)dG(s2) +

∫ q̄

b

πdl (s2, s)dG(s2) + πdh

(
s,
a+ b

2

)
[G(b)−G(a)] .

Note that Π1 is linear in both cases and the slopes differ only in the last term. Since

d

ds
Π1|(a, a+b2 ) −

d

ds
Π1|( a+b2 ,b) = −(Adl +Adh) [G(b)−G(a)] < 0,

Π1 is piece-wise linear and overall convex on (a, b). This implies that pooling at (a, b) can not be a

best response by firm 1.

That bi-pooling cannot arise in equilibrium for the same reason. If there is an interval (a, b)

such that in firm 2’s strategy only two scores c, d ∈ (a, b) are generated, we can easily show that

the same strategy cannot be a best response by firm 1 since Π1 is convex on (a, b):

d

ds
Π1|(a,c) <

d

ds
Π1|(c,d) <

d

ds
Π1|(d,b).

Proof of lemma 8. The previous lemmas implies that G must be continuous at any state s > s0 + δ

if G involves pooling at s0 with radius δ for any δ > 0. When there is no such pooling, G is

continuous at all states above s0.

By contradiction, assume there exists an interval [a, b] such that G is strictly increasing and

G 6= F . Pick a state s ∈ (a, b), we have

Π1(s) =

∫ s0

q

πm(s)dG(s2) +

∫ a

s0

πd(s, s2)dG(s2) +

∫ q̄

b

πdl (s2, s)dG(s2)

+

∫ s

a

πdh(s, s2)dG(s2) +

∫ b

s

πdl (s2, s̃)dG(s2)

Note that the first three terms are linear in s. Since G is continuous and hence almost everywhere
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differentiable, we can take the first order derivative of Π at states where a pdf g is well defined:

d

dx
Π1(s) =(Adh −Adl )G(s)−AdhG(a)−AdlG(b) + Ã

where Ã is a constant. In order that G constitute a “matching-pennies” type equilibrium, Π1(s)

must be linear on (a, b), implying a constant first order derivative. Hence G(s) for s ∈ (a, b)

must be constant. There are two possibilities: (1) (a, b) is contained in a pooling region, which

contradicts with the fact that the only pooling occurs in a neighborhood of s0 and a > s0 + δ; (2)

(a, b) /∈ [s0, s0 +δ) is contained in a super-interval (a, b) ⊂ (c, d) ⊂ [s0 +δ, q̄] such that G is constant

in (c, d) and strictly increasing in (c−ε, c] and [d, d+ε′) for some ε, ε′ > 0. To show this is impossible,

first note that it cannot be G|[s0+δ,c]∪[d,q̄] = F |[s0+δ,c]∪[d,q̄] since it violates G ∈ MPC(F ). Hence we

can repeat the “linear Π” argument for sub-intervals of [s0 + δ, c] ∪ [d, q̄], leading to the conclusion

that there can be no sub-intervals of [s0, q̄] where G is strictly increasing and G 6= F . This implies

that either 1) G(s) = G(s0) for all s ≥ s0, 2) there exists a δ such that G(s) = G(s0) for all

s ∈ [s0, s0 + δ] and G(s) = F (s) for s ≥ s0 + δ, or 3) G is a step function with at least one jump

points above s0. The first two cases conform with the class of strategies Gδ. The last case violates

the lemma that there no mass point other than s0 in any equilibrium.

Proof of proposition 1. When α = 1
2 , the price is merely a transfer that does not affect the total

welfare. Hence the regulator’s objective is:

max
∑

i∈{1,2}

∫
Θ

∫
S

∫
Q

θqi1{purchase from firm i}dG(q|s)dG(s)dH(θ)

=
∑

i∈{1,2}

∫
Θ

∫
S

θs1{purchase from firm i}dG(s)dH(θ)

subject to the consumers’ optimal product choice given equilibrium prices.

Note that when s0 = q, both firms fully reveal quality and the regulator can achieve its complete

information outcome subject to the pricing equilibrium and the consumers’ individual rationality.

Any partial pooling leads to 1) fewer consumers purchasing from the high quality firm, and 2) lower

matching efficiency since consumers randomize with equal probability when the realized qualities
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fall in the pooling region.

Proof of proposition 2. In the duopoly market with perceived qualities (sl, sh), the ex post consumer

surplus is

CSd(sh, sl) =

∫ X

θ

(θsl − pl)dH(θ) +

∫ θ̄

X

(θsh − ph)dH(θ) = Chsh + Clsl

where we denote Ch = −11θ2 − 14θ̄θ + 2θ̄2

18(θ̄ − θ)
> 0, Cl =

11θ̄2 − 14θ̄θ + 2θ2

18(θ̄ − θ)
> Ch.

In the monopoly market with perceived quality s the consumer surplus is

CSm(s) =

∫ θ̄

θ̄/2

(θs− pm(s))dH(θ) =
1

8

θ̄2

θ̄ − θ
s = Cms.

When s0 ≤ sl0, both firms choose δ = s0− q. The corresponding expected equilibrium consumer

surplus is

CS(s0) =F (s0 + δ)2CSd(s0, s0) + 2F (s0 + δ)

∫ q̄

s0+δ

CSd(s, s0)dF (s) + 2

∫ q̄

s0+δ

∫ h

s0+δ

CSd(h, l)dF (l)dF (h)

=
4s0(s0 − q)2

(q̄ − q)2
(Ch + Cl) +

4(s0 − q)
(q̄ − q)2

[
Ch

q̄2 − (2s0 − q)2

2
+ Cls0(q̄ + q − 2s0)

]

+
2

(q̄ − q)2

[
(2Ch + Cl)

q̄3 − (2s0 − q)3

6
− Ch(2s0 − q)

q̄2 − (2s0 − q)2

2
− Cl

(2s0 − q)2(q̄ + q − 2s0)

2

]

=
1

(q̄ − q)2

{
4s0(s0 − q)2(Ch + Cl)− qCh(q̄2 − (2s0 − q)2)− Clq2(q̄ + q − 2s0) +

(2Ch + Cl)(q̄
3 − (2s0 − q)3)

3

}

Take the first order derivative we get

CS′(s0) =
1

(q̄ − q)2

{
(Ch + Cl)(12s2

0 − 16s0q + 4q2) + qCh(8s0 − 4q) + 2Clq
2 − 2(2Ch + Cl)(2s0 − q)2

}
=

4

(q̄ − q)2
(Cl − Ch)(s0 − q)2 ≥ 0,

so the consumer surplus increases with s0 when s0 ≤ sl0.
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