Information Design in Vertically Differentiated

 OligopoliesRenkun Yang

Jinan University
August 8, 2022

We conduct

a theoretical exercise that applies (competitive) Bayesian persuasion to a Shaked-Sutton duopoly (vertical diff. + hetero. consumer)

1 firms design own quality info and price after signal realization
2 a designer (literal or metaphorical) designs joint quality info and firms price after signal realization

We conduct

a theoretical exercise that applies (competitive) Bayesian persuasion to a Shaked-Sutton duopoly (vertical diff. + hetero. consumer)

1 firms design own quality info and price after signal realization
full revelation is dominant strategy for some market structure
\& is Nash eqm for some priors

2 a designer (literal or metaphorical) designs joint quality info and firms price after signal realization
ranking maximizes social welfare no-info maximizes consumer welfare

We conduct

a theoretical exercise that applies (competitive) Bayesian persuasion to a Shaked-Sutton duopoly (vertical diff. + hetero. consumer)

1 firms design own quality info and price after signal realization Hwang, Kim \& Boleslavsky (2019) for horizontal diff.
\& price before realization

2 a designer (literal or metaphorical) designs joint quality info and firms price after signal realization

Armstrong \& Zhou (2022) for horizontal diff. \& reduced to 1-dim

Model

Market environment

- 2 firms, qualities $q_{i} \sim F(\cdot)$ i.i.d.
- unit mass consumers, taste $\theta \sim H=U[\underline{\theta}, \bar{\theta}]$ utility: $u= \begin{cases}\theta q_{i}-p_{i} & \text { purchase from firm } i \\ 0 & \text { no purchase }\end{cases}$

Information strategy

- info structure $\left(M_{i}, \tau_{i}\right), \tau_{i}: Q_{i} \rightarrow \Delta\left(M_{i}\right)$
- equiv., a distribution $G_{i} \in M P C(F)$ over posterior means s_{i} (perceived quality)

Timing

firm i chooses G_{i}
nature draws q_{i}
s_{i} pulicly drawn
firm i chooses p_{i}
consumers purchase

(Nonexhaustive) market specification

The price eqm is sorting. Depending on $H(\theta)$, the market might be covered or uncovered:

Covered Market

Price equilibrium: fixed market share

Assumption (covered market). $\quad \frac{\bar{q}-\underline{q}}{\underline{q}} \leq \frac{3 \underline{\theta}}{\bar{\theta}-2 \underline{\theta}}$.
Market shares are fixed: type cutoff $\underline{\underline{q}}=\frac{1}{3}(\bar{\theta}+\underline{\theta})$

$$
\begin{aligned}
p_{h}^{*} & =\frac{(2 \bar{\theta}-\underline{\theta})}{3}\left(s_{h}-s_{l}\right), p_{l}^{*}=\frac{(\bar{\theta}-2 \underline{\theta})}{3}\left(s_{h}-s_{l}\right) \\
\pi_{h}^{*} & =\frac{(2 \bar{\theta}-\underline{\theta})^{2}}{9(\bar{\theta}-\underline{\theta})}\left(s_{h}-s_{l}\right), \pi_{l}^{*}=\frac{(\bar{\theta}-2 \underline{\theta})^{2}}{9(\bar{\theta}-\underline{\theta})}\left(s_{h}-s_{l}\right)
\end{aligned}
$$

Full info: dominant strategy

Proposition

In covered duopoly, full revelation is a dominant strategy equilibrium.

Intuition

- Information strategies have no market share effect
- The price effect is unambiguous:
- more information \Rightarrow more dispersion in "perceived" quality
- larger perceived differentiation \Rightarrow less price competition

Full info: dominant strategy

Figure 1: Firm 1's profit function $\pi_{1}\left(s_{1} \mid s_{2}\right)$ given a fixed s_{2}.

Full info: dominant strategy

Figure 1: Firm 1's profit function $\pi_{1}\left(s_{1} \mid s_{2}\right)$ given a fixed s_{2}.

Uncovered Market

Price equilibrium: signal-dependent market share

Assumption (uncovered market). $\underline{\theta}=0, \bar{\theta}=1$.
Equilibrium market shares depend on prices (and scores):

$$
\begin{array}{ll}
p_{l}^{*}\left(s_{h}, s_{l}\right)=\frac{s_{l}\left(s_{h}-s_{l}\right)}{4 s_{h}-s_{l}}, & p_{h}^{*}\left(s_{h}, s_{l}\right)=\frac{2 s_{h}\left(s_{h}-s_{l}\right)}{4 s_{h}-s_{l}} \\
\pi_{l}^{*}\left(s_{h}, s_{l}\right)=\frac{s_{l} s_{h}\left(s_{h}-s_{l}\right)}{\left(4 s_{h}-s_{l}\right)^{2}}, & \pi_{h}^{*}\left(s_{h}, s_{l}\right)=\frac{4 s_{h}^{2}\left(s_{h}-s_{l}\right)}{\left(4 s_{h}-s_{l}\right)^{2}}
\end{array}
$$

Full info: not dominant

Firm 2 conceals, firm 1 induces 1 cutoff

Firm 2 induces 1 cutoff, firm 1 induces 2

Intuition

The information strategies affect market outcome through:

- (unilateral) price effect: reveal more to soften competition
- market share effect: reveal less to attract consumers
- (strategic) price effect: reveal more to avoid Bertrand competition

Full info: Nash? Not always!

Full revelation equilibrium does not always obtain

If firm 2 reveals $F(x)=x^{0.5} \quad$ If firm 2 reveals $F(x)=x^{3}$

Full info NE: a sufficient condition

Corollary (uniform prior)

If $\bar{q} \leq 2.5 \underline{q}$, full revelation constitutes a symm eqm.

Rough Intuition

scope of differentiation vs. consumer attraction

- when $\underline{q}=0$, firm 1 attracts no consumer at $s_{1}=\underline{q}$: pooling upwards
- when \underline{q} is close to \bar{q}, firm 1 attracts enough consumers even at the bottom: enlarge differentiation

Otherwise?

Proposition (Nonexistence)

If full revelation is not an eqm, then there exists no symmetric eqm.

Lemma (Characterization)

If a symmetric equilibrium exists (but not full revelation), it must be such that (1) G^{*} is continuous and strictly increasing almost everywhere, (2) $\Pi_{i}\left(s_{i} \mid G^{*}\right)$ is weakly convex, and (3) $\Pi_{i}\left(s_{i} \mid G^{*}\right)$ is strictly convex whenever $G^{*}\left(s_{i}\right)=F\left(s_{i}\right)$ and linear whenever $G^{*}\left(s_{i}\right) \neq F\left(s_{i}\right)$.

Otherwise?

Proposition (Nonexistence)

If full revelation is not an eqm, then there exists no symmetric eqm.

Lemma (Characterization)

If a symmetric equilibrium exists (but not full revelation), it must be such that (1) G^{*} is continuous and strictly increasing almost everywhere, (2) $\Pi_{i}\left(s_{i} \mid G^{*}\right)$ is weakly convex, and (3) $\Pi_{i}\left(s_{i} \mid G^{*}\right)$ is strictly convex whenever $G^{*}\left(s_{i}\right)=F\left(s_{i}\right)$ and linear whenever $G^{*}\left(s_{i}\right) \neq F\left(s_{i}\right)$.
*linearity characterizes the partial-info eqm in HBK (19)

Social- and Consumer-Optimum

Proposition

- social optimal info: nothing-but-ranking;
- consumer optimal info: anything-but-ranking, e.g., full concealment.

Intuition

- social optimal: ranking for sorting, no more for market coverage
- consumer optimal: no-ranking for 0-price Bertrand

Social- and Consumer-Optimum

Proposition

- social optimal info: nothing-but-ranking;
- consumer optimal info: anything-but-ranking, e.g., full concealment.

Intuition

- social optimal: ranking for sorting, no more for market coverage
- consumer optimal: no-ranking for 0-price Bertrand
*qualitatively similar to AZ (22) but simpler

Social- and Consumer-optimum

Figure 2: Left panel: ex post social welfare; right panel: ex post consumer surplus

Related Literature

Vertical differentiation and quality disclosure

- Shaked \& Sutton, 1982; Board, 2009; Levin et al., 2009
(Optimal/competitive) information design
- Methods: Kamenica \& Gentzkow, 2011, 2016; Dworczak \& Maritini, 2019; Kleiner et al., 2020; Arieli et al., 2020
- Applications: Gill and Sgroi, 2012; Roesler \& Szentes, 2017;

Zapechelnyuk, 2020; Condorelli \& Szentes, 2021; Hwang, Kim \& Boleslavsky, 2019; Armstrong \& Zhou, 2022

Thanks!

