Competitive Product Tests with Minimum Quality Standards

Renkun Yang

Department of Economics
The Ohio State University

August 29, 2022
Two firms compete in quality disclosure and price under policy interventions
Vertical oligopoly:

▶ Firms sort in quality and each serves a segment of the market
▶ Firms max differentiation and under-provide quality

Policy intervention: minimum quality standard (MQS)
▶ mitigate excessive differentiation and raise quality provision
Vertical oligopoly:

- Firms sort in quality and each serves a segment of the market
- Firms max differentiation and under-provide quality

Policy intervention: minimum quality standard (MQS)

- mitigate excessive differentiation and raise quality provision

Competitive disclosure via Bayesian persuasion:
Vertical oligopoly:

- Firms sort in quality and each serves a segment of the market
- Firms max differentiation and under-provide quality

Policy intervention: minimum quality standard (MQS)

- mitigate excessive differentiation and raise quality provision

Competitive disclosure via Bayesian persuasion:

- ex ante: firms do not always know the exact quality, e.g., medical tests
- flexibility: increasing availability of various channels, e.g., IncoTest, Consumer Reports, lab or field experiments, etc.
- credibility: firms prefer credibility if possible
Introduction

Vertical oligopoly:

- Firms sort in quality and each serves a segment of the market
- Firms max differentiation and underprovide quality

Policy intervention: minimum quality standard (MQS)

- mitigate excessive differentiation and raise quality provision

Competitive disclosure via Bayesian persuasion:

- ex ante: firms do not always know the exact quality, e.g., medical tests
- flexibility: increasing availability of various channels, e.g., IncoTest, Consumer Reports, lab or field experiments, etc.
- credibility: firms prefer credibility if possible
Related Literature

Vertical differentiation and quality disclosure
- Shaked and Sutton, 1982; Board, 2009; Levin et al., 2009

Minimum quality standard
- Leland, 1979; Ronnen, 1991; Crampes and Hollander, 1995; Buehler and Schuett, 2014

(Competitive) information design
- KG, 2011; Dworczak and Maritini, 2019; Kleiner et al., 2020; Arieli et al., 2020
- Gill and Sgroi, 2012; Zapechelnyuk, 2020; Roesler and Szentes, 2018
- KG, 2016; Boleslavsky et al., 2019; Yang, 2020
Market environment

- Two firms, qualities $q_i \sim F = U[q, \bar{q}]$ i.i.d.
- Unit mass of consumers, taste $\theta \sim H = U[\theta, \bar{\theta}]$
- Consumer’s utility if purchase from i: $u = \theta q_i - p_i$
- Covered duopoly assumptions $\bar{\theta} \geq 2\theta$, $\frac{\bar{q} - q}{q} \leq \frac{3\theta}{\bar{\theta} - 2\theta}$.
Timing

- A minimum quality standard s_0 is imposed.
- Firms choose public tests $\tau_i = (\beta_i, S_i)$.
- Scores $s_i = E(q_i | s_i)$ are publicly generated.
- Firm i exits iff $s_i < s_0$.
- Remaining firm(s) decide price.
- Consumers choose products.
Monopoly:

- Consumers purchase if $s\theta - p \geq 0$
- Monopolist: $\max_p p(1 - H(p/s))$
- Equilibrium

\[
p^m = \frac{\bar{\theta}}{2} s, \quad \pi^m(s_i) = \frac{\bar{\theta}^2}{4(\bar{\theta} - \bar{\theta})} s
\]
Duopoly:

- Consumers purchase from i if $s_i \theta - p_i \geq \max\{s_j \theta - p_j, 0\}$
- The cutoff type X: $s_i X - p_i = s_j X - p_j$
- High (low) score firm serves $\theta \geq X$ ($\theta < X$)
Duopoly:

- Consumers purchase from i if $s_i \theta - p_i \geq \max\{s_j \theta - p_j, 0\}$
- The cutoff type X: $s_i X - p_i = s_j X - p_j$
- High (low) score firm serves $\theta \geq X$ ($\theta < X$)
- Equilibrium $X^* = \frac{\bar{\theta} + \theta}{3}$

\[
\begin{align*}
 p_h^d &= \frac{(2\bar{\theta} - \theta)}{3} (s_h - s_l), \quad p_l^d = \frac{(\bar{\theta} - 2\theta)}{3} (s_h - s_l).
 \\
 \pi_h^d &= \frac{(2\bar{\theta} - \theta)^2}{9(\bar{\theta} - \theta)} (s_h - s_l), \quad \pi_l^d = \frac{(\theta - 2\theta)^2}{9(\bar{\theta} - \theta)} (s_h - s_l).
\end{align*}
\]
In equilibrium each firm i chooses τ_i such that

$$\tau_i^* \in \arg\max_{\tau_i} \mathbb{E}_{\tau_i} \mathbb{E}_{\tau_{-i}} [\pi_i] \ \forall \ i$$
Equivalently

\[
\max_{G_i \in MPC(F)} \int_{\bar{q}} \int_{\bar{q}} \pi_i(s_i, s_{-i}) dG_{-i}(s_{-i}) dG_i(s_i) \quad \forall \ i
\]

Figure 1: \(\pi_1(s_1, s_2)\) when \(s_0 = 2, s_2 = 3.5\)
Theorem

For any s_0 there exists an essentially unique symmetric equilibrium such that:

1. when $s_0 < s^l_0$, each firm pools all states in $[q, 2s_0 - q]$ at s_0

2. when $s^l_0 \leq s_0 < s^u_0$, each firm pools all states in $[s_0 - \delta, s_0 + \delta]$ at s_0 and reveals all states $s_i > s_0 + \delta$

3. when $s_0 > s^u_0$, each firm pools all states $s_i > 2s_0 - \bar{q}$ at s_0

where δ, s^l_0, s^u_0 are uniquely determined.
Softening competition

- Both firms enjoy maximal differentiation
- Toward full revelation

Increasing pass probability

- Both firms hate exclusion
- Toward concealment around s_0
Figure 2: Equilibrium interim payoff $\int \pi_1(s_1, s_2) dG^*(s_2)$
Proof of Equilibrium Characterization

Figure 3: Non-equilibrium interim payoff $\delta_2 > \delta^*$
Proof of Equilibrium Characterization

Figure 4: Non-equilibrium interim payoff $\delta_2 < \delta^*$
Proof of Equilibrium Uniqueness

\[
\max_{G \in MPC(F)} \int \pi(s) dG(s)
\]

All possible best responses (Kleiner, Moldovanu and Strack, 2020)

- Interval partitions with separating, uni-pooling, bi-pooling
- Arbitrary when \(\pi(s) \) is linear (indifferent)

Proof by contradiction

- Full separation is not eqm
- No mass points other than \(s_0 \)
- No “matching-pennies” equilibrium
Figure 5: Equilibrium distribution of scores and market structure

red: monopoly
blue: duopoly
Welfare Implication

Nontrivial MQS hurts firms

- (−) Intensify price competition
- (−) Induce exclusion when $s_0 > s^l_0$
- (+) Creates monopoly but dominated when $s_0 > s^l_0$

Nontrivial MQS hurts total welfare (PS+CS)

- (−) Induce mismatch
- (−) Induce exclusion when $s_0 > s^l_0$
- Price is pure transfer
Nontrivial MQS benefits consumers

- (+) Intensify price competition
- (−) Induce mismatch
- (−) Induce monopoly and no trade when $s_0 > s^l_0$

A nontrivial MQS increases CS when it’s low

$$\frac{d}{ds_0} CS > 0 \text{ when } s_0 \in (q, s^l_0)$$
Extensions?

- General q distribution? No problem
- General θ distribution? No problem
- Uncovered market? Maybe
 - Additional concern: demand effect
 - Additional reason for introducing MQS
Who controls the test?

- Regulator designs test/certification
- A self-interested intermediary
- Firms can always disclose more? (Terstiege and Wasser, 2020)

Quality provision and certification design

- How firms invest in quality improvement in response to different tests?
- Bayesian persuasion with moral hazard (Boleslavsky and Kim, 2018; Zapechelnyuk, 2020 AERI)
Thanks!